Integrally closed modules over two-dimensional regular local rings
نویسندگان
چکیده
منابع مشابه
Integrally Closed Ideals in Two-dimensional Regular Local Rings Are Multiplier Ideals
Multiplier ideals in commutative rings are certain integrally closed ideals with properties that lend themselves to highly interesting applications. How special are they among integrally closed ideals in general? We show that in a two-dimensional regular local ring with algebraically closed residue field there is in fact no difference between “multiplier” and “integrally closed” (or “complete.”...
متن کاملIntegrally Closed Finite-colength Ideals in Two-dimensional Regular Local Rings Are Multiplier Ideals
Introduction. There has arisen in recent years a substantial body of work on “multiplier ideals” in commutative rings (see [La]). Multiplier ideals are integrally closed ideals with properties that lend themselves to highly interesting applications. One is tempted then to ask just how special multiplier ideals are among integrally closed ideals in general. In this note we show that in a two-dim...
متن کاملIntegrally Closed Modules and their Divisors
There is a beautiful theory of integral closure of ideals in regular local rings of dimension two, due to Zariski, several aspects of which were later extended to modules. Our goal is to study integral closures of modules over normal domains by attaching divisors/determinantal ideals to them. They will be of two kinds: the ordinary Fitting ideal and its divisor, and another ‘determinantal’ idea...
متن کاملPeriodic modules over Gorenstein local rings
It is proved that the minimal free resolution of a module M over a Gorenstein local ring R is eventually periodic if, and only if, the class of M is torsion in a certain Z[t ±1 ]-module associated to R. This module, denoted J(R), is the free Z[t ±1 ]-module on the isomorphism classes of finitely generated R-modules modulo relations reminiscent of those defining the Grothendieck group of R. The ...
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1995
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-1995-1308016-0